AB Calculus – Step-by-Step
1. Limits

Consider the functions \(f(x) = \frac{ax^2 - b}{x^2 - 4} \) and \(g(x) = \frac{x^2 - cx + d}{x^2 - 4} \).

a. If \(\lim_{x \to 3} f(x) = 6 \), find a relationship between \(a \) and \(b \). (1)

\[
\lim_{x \to 3} f(x) = \frac{9a - b}{9 - 4} = 6 \Rightarrow 9a - b = 30 \quad \text{or} \quad b = 9a - 30
\]

1 pt for relationship

b. If, in addition, \(\lim_{x \to 1} f(x) = 1 \), find the values of \(a \) and \(b \). (3)

\[
\lim_{x \to 1} f(x) = \frac{a - b}{1 - 4} = 1 \Rightarrow a - b = -3 \quad \text{or} \quad b = a + 3
\]

\[
a + 3 = 9a - 30 \Rightarrow 8a = 33 \Rightarrow a = \frac{33}{8}
\]

\[
b = a + 3 = \frac{57}{8}
\]

1 pt for \(b = a + 3 \)
1 pt for \(a \)
1 pt for \(b \)

c. Find \(\lim_{x \to -\infty} f(x) \). (1)

\[
\lim_{x \to -\infty} f(x) = a = \frac{33}{8}
\]

1 pt for answer

d. If \(\lim_{x \to 2} g(x) = 3 \), find \(c \) and \(d \). (4)

\[
\lim_{x \to 2} g(x) = \frac{x^2 - cx + d}{(x-2)(x+2)} = 3
\]

For this to happen, \(x^2 - cx + d \) must factor into \((x-2)(x-k)\)

\[
\lim_{x \to 2} g(x) = \frac{(x-2)(x-k)}{(x-2)(x+2)} = \frac{x-k}{x+2} = \frac{2-k}{4} = 3
\]

\[
2 - k = 12 \Rightarrow k = -10
\]

\[
x^2 - cx + d = (x-2)(x+10) = x^2 + 8x - 20
\]

\[
c = -8, d = -20
\]

1 pt for realizing numerator must factor into factor into \((x-2)(x-k)\)
1 pt for \(x^2 + 8x - 20 \)
1 pt for \(c \), 1 pt for \(d \)
AB Calculus – Step-by-Step
2. Average/Instantaneous Rate of Change

The Newton Bridge is a toll bridge that gets a lot of traffic during the two hour rush hour period starting at 4:00 PM. The total number of vehicles that go through the northbound is a differentiable function \(V \) of time \(t \). A table of selected values of \(V \) is given for the time interval \(0 \leq t \leq 2 \) where \(t = 0 \) corresponds to 4 PM.

<table>
<thead>
<tr>
<th>(t) (hours)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V(t)) (vehicles)</td>
<td>0</td>
<td>200</td>
<td>425</td>
<td>755</td>
<td>unknown</td>
</tr>
</tbody>
</table>

The southbound tollbooth also monitors vehicles that pass through it by estimating the rate of vehicles that come through. This rate is given by the differentiable function \(R \) of \(t \). A table of selected values of \(R \) is given for the time interval \(0 \leq t \leq 2 \) where \(t = 0 \) corresponds to 4 PM.

<table>
<thead>
<tr>
<th>(t) (hours)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(t)) (vehicles per hour)</td>
<td>390</td>
<td>425</td>
<td>425</td>
<td>535</td>
<td>460</td>
</tr>
</tbody>
</table>

a. Approximate \(V'(0.75) \). Show the computation that leads to your answer. Explain the meaning of your answer in context to the problem situation using correct units of measure.

\[
V'(0.75) = \frac{V(1) - V(0.5)}{1 - 0.5} = \frac{425 - 200}{0.5} = 450
\]

Vehicles are passing through the northbound tollbooth at 4:45 PM at approximately 450 vehicles/hour.

b. Approximate \(R'(1.75) \). Show the computation that leads to your answer. Explain the meaning of your answer in context to the problem situation using correct units of measure.

\[
R'(1.75) \approx \frac{R(2) - R(1.5)}{2 - 1.5} = \frac{460 - 535}{0.5} = -150
\]
The rate of vehicles that are passing through the southbound tollbooth at 5:45 PM is decreasing at approximately 150 vehicles per hour per hour.

c. The number of vehicles that have passed through the northbound tollbooth by 6 PM is unknown. It is known that the average rate of change of vehicles passing through this booth between 4 PM and 6 PM is the same as the average rate of change of vehicles passing through this booth between 5 PM and 6 PM. Approximate the total vehicles having passed through the northbound tollbooth by 6:00 PM. Show the computation that leads to your answer.

\[
\frac{V(2) - V(0)}{2 - 0} = \frac{V(2) - V(1)}{2 - 1} \Rightarrow V(2) = \frac{V(2) - V(1)}{1} = \frac{V(2) - 425}{2} = \frac{V(2) - 425}{1} = 850
\]

\[
2V(2) - 850 = V(2) \Rightarrow V(2) = 850
\]
d. (1) 1 pt for context for parts a and b (4:45 PM, 5:45 PM)

© 2012 www.mastermathmentor.com

Illegal to post this document on the Internet
AB Calculus – Step-by-Step
3. Basic Derivatives and Limits

For the following problems, \(f(x) = \frac{2}{x^2} \) and \(g(x) = x^2 - 6 \).

a. Find \(\lim_{x \to -\infty} f(x)g(x) \). \(\text{(1)} \)

\[
\lim_{x \to -\infty} f(x)g(x) = \lim_{x \to -\infty} \frac{2(x^2 - 6)}{x^2} = 2
\]

1 pt answer

b. Find \(\frac{d}{dx} [f(x)g(x)] \). \(\text{(1)} \)

\[
\frac{d}{dx} \left[\frac{2x^2 - 12}{x^2} \right] = \frac{d}{dx} \left(\frac{2 - 12}{x^2} \right) = \frac{12(2x)}{x^4} = \frac{24}{x^3}
\]

1 pt answer

c. Find \(\frac{d}{dx} [x \cdot g(f(x))] \). \(\text{(2)} \)

\[
x \cdot g(f(x)) = x \left(\frac{2}{x^2} \right)^2 - 6 = \frac{4}{x^3} - 6x
\]

\[
\frac{d}{dx} \left(\frac{4}{x^3} - 6x \right) = \frac{-4(3x^2)}{x^6} - 6 = -\frac{12}{x^4} - 6
\]

1 pt for finding \(x \cdot g(f(x)) \)
1 pt answer

d. If \(\frac{1}{y} = f(x) + 1 \), find \(\frac{dy}{dx} \). \(\text{(2)} \)

\[
y = \frac{1}{f(x) + 1} = \frac{1}{\frac{2}{x^2} + 1} = \frac{x^2}{x^2 + 2}
\]

\[
\frac{dy}{dx} = \frac{(x^2 + 2)(2x) - x^2(2x)}{(x^2 + 2)^2} = \frac{4x}{(x^2 + 2)^2}
\]

1 pt for \(y = \frac{x^2}{x^2 + 2} \)
1 pt for \(\frac{dy}{dx} \)

e. Find \(\lim_{\Delta x \to 0} \frac{f'(-2 + \Delta x) - f'(-2)}{\Delta x} \). \(\text{(3)} \)

This is asking for the derivative of \(f'(x) \) or \(f''(x) \) at \(x = -2 \)

\[
f'(x) = \frac{-4}{x^3} \text{ so } f''(x) = \frac{4(3x^2)}{x^6} = \frac{12}{x^3}
\]

\[
f''(-2) = \frac{12}{16} = \frac{3}{4}
\]

1 pt for realizing is \(f''(x) \) is needed
1 pt for \(f''(x) \)
1 pt for \(f''(-2) \)
The functions f and g are differentiable for all real numbers g. The table above gives values of the function and their first derivatives at selected values of x.

a. If the function h is given by $h(x) = \frac{f(x)}{g(x)} + x$, find $h'(1)$.
\[h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2} + 1 \]
\[h'(1) = \frac{g(1)f'(1) - f(1)g'(1)}{[g(1)]^2} + 1 = \frac{5(-3) - 4(2)}{5^2} + 1 = \frac{-23}{25} + 1 = \frac{2}{25} \]

b. If the function r is given by $r(x) = -2f(x)g(x)$, find the equation of the tangent line to $r(x)$ at $x = 2$.
\[r(2) = -2f(2)g(2) = -2(-3)(4) = 24 \]
\[r'(x) = -2\left[f(x)g'(x) + g(x)f'(x)\right] \]
\[r'(2) = -2\left[f(2)g'(2) + g(2)f'(2)\right] = -2\left[(-3)(6) + 4(-1)\right] = 44 \]
\[y - 24 = 44(x - 2) \text{ or } y = 44x - 64 \]

(c) If the function v is given by $v(x) = \frac{f(x) - 1}{f(x)}$, find the slope of the line normal to v at $x = 3$.
\[v(x) = \frac{f(x) - 1}{f(x)} = 1 - \frac{1}{f(x)} \]
\[v'(x) = \frac{f(x)(0) - (-1)f'(x)}{f(x)^2} = v'(3) = \frac{f'(3)}{f(3)^2} = \frac{8}{\pi^2} \]
\[\text{slope of normal line is } \frac{-\pi^2}{8} \]

(d) If the function w is given by $w(x) = xf(x)$ and $w'(4) = 9$, find $f'(4)$.
\[w'(x) = xf'(x) + f(x) \]
\[w'(4) = 4f'(4) + f(4) = 9 \Rightarrow 4f'(4) - 5 = 9 \]
\[4f'(4) = 14 \Rightarrow f'(4) = \frac{7}{2} \]
Let \(f(x) = x + \sin x \) which is defined on \([0, 2\pi]\).

a. Find all exact values of \(x \) for which \(f'(x) = 1.5 \).

\[
f'(x) = 1 + \cos x = 1.5
\]
\[
\cos x = 0.5 \Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}
\]

2 pts for answers

b. If \(g(x) = \frac{f(x)}{x} \), find the equation to the tangent line to \(g \) at \(x = \frac{\pi}{2} \).

\[
g(x) = \frac{x + \sin x}{x} = 1 + \frac{\sin x}{x}
\]
\[
g\left(\frac{\pi}{2}\right) = 1 + \frac{1}{\frac{\pi}{2}} = 1 + \frac{2}{\pi}
\]
\[
g'(x) = \frac{xcosx - \sin x}{x^2} \Rightarrow g'\left(\frac{\pi}{2}\right) = \frac{\frac{\pi}{2} \cdot 0 - 1}{\left(\frac{\pi}{2}\right)^2} = -\frac{4}{\pi^2}
\]
\[
y - \left(1 + \frac{2}{\pi}\right) = -\frac{4}{\pi^2} \left(x - \frac{\pi}{2}\right)
\]

1 pt for \(g\left(\frac{\pi}{2}\right) \)

1 pt for \(g'\left(\frac{\pi}{2}\right) \)

1 pt for equation

c. If \(h(x) = \csc x \), find all values of \(x \) on \([0, 2\pi]\) where \(f'(x) = h'(x) \).

\[
h(x) = \frac{1}{\sin x} \Rightarrow h'(x) = -\frac{\cos x}{\sin^2 x}
\]
\[
1 + \cos x = -\frac{\cos x}{\sin^2 x}
\]
\[
\sin^2 x (1 + \cos x) = -\cos x \Rightarrow \sin^2 x (1 + \cos x) + \cos x = 0
\]
\[
x = 2.032, x = 4.251
\]

1 pt for setting student’s \(f'(x) = h'(x) \)

2 pt for answers
AB Calculus – Step-by-Step
6. Linear Approximation

A line is tangent to the graph of \(f(x) = 25 - x^2 \) at point \(P \), as shown in the figure above.

a. Show that the \(x \)-coordinate of point \(P \) is 3. Explain your reasoning.

\[
\text{Point } P(3,16) \\
f'(x) = m_{\text{parabola}} = -2x \\
\text{At } x = 3, \text{ the slope of the tangent line to the parabola } = \text{slope of the line} \\
m = f'(3) = -6 \\
y - 34 = -6x \quad \text{or} \quad y = 34 - 6x
\]

b. Find the equation of the line.

\[
m = -2(3) = -6 \\
y - 34 = -6x \quad \text{or} \quad y = 34 - 6x
\]

c. Show that the difference between \(f(3 + a) \) and the linear approximation to \(f(x) \) at \(x = 3 + a \) where \(a \) is a constant gives the same value as the difference between \(f(3 - a) \) and the linear approximation to \(f(x) \) at \(x = 3 - a \).

\[
\begin{align*}
\text{At } x = 3 + a & \quad \text{At } x = 3 - a \\
\text{Approximation } = 34 - 6(3 + a) = 16 - 6a & \quad \text{Approximation } = 34 - 6(3 - a) = 16 + 6a \\
f(3 + a) = 25 - (3 + a)^2 = 16 - 6a - a^2 & \quad f(3 - a) = 25 - (3 - a)^2 = 16 + 6a - a^2 \\
\text{Difference } = 16 - 6a - (16 - 6a - a^2) = a^2 & \quad \text{Difference } = 16 + 6a - (16 + 6a - a^2) = a^2
\end{align*}
\]

1 pt for approximation at \(3 + a \)
1 pt for \(f(3 + a) \)
1 pt for approximation at \(3 - a \)
1 pt for \(f(3 - a) \)
1 pt for showing differences are the same

© 2012 www.mastermathmentor.com

Illegal to post this document on the Internet
AB Calculus – Step-by-Step
7. Chain Rule/Trig

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$f'(x)$</th>
<th>$g(x)$</th>
<th>$g'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{3\pi}{4}$</td>
<td>$\sqrt{2}$</td>
<td>0</td>
<td>$\frac{1}{a}$</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>-6</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>$2a^2$</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

The functions f' and g are differentiable for all real numbers x. The table above gives values of the function and their first derivatives at selected values of x with a being a constant.

a. If $h(x) = \sin\left(f\left(\frac{3\pi}{4}\right)\right) = \frac{\sqrt{2}}{2}$, write an equation of the line tangent to h at the point where $x = 1$. (3)

$h(1) = \sin f(1) = \sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}$

$h'(x) = \cos(f(x)) \cdot f'(x) \Rightarrow h'(1) = \cos(f(1)) \cdot f'(1) = \cos\left(\frac{3\pi}{4}\right) \cdot \sqrt{2} = \frac{-\sqrt{2}}{2} \cdot \sqrt{2} = -1$

$y - \frac{\sqrt{2}}{2} = -1(x - 1)$ or $y = -x + 1 + \frac{\sqrt{2}}{2}$

1 pt for $h(1)$
1 pt for $h'(1)$
1 pt for equation

b. If $r(x) = \frac{1}{\sqrt{g(2x)}}$, find $r'(x)$ at $x = 2$. (2)

$r(x) = \left[g(2x)\right]^{-\frac{1}{2}} \Rightarrow r'(x) = \left[-\frac{1}{2} \cdot g(2x)^{-\frac{3}{2}} \cdot g'(2x) \cdot 2 = -\frac{g'(2x)}{g(2x)^{\frac{3}{2}}} \right]$ $\frac{r'(2)}{g(4)^{\frac{3}{2}}} = \frac{-3}{9^{\frac{3}{2}}} = \frac{-3}{27} = \frac{-1}{9}$

1 pt for $r'(x)$
1 pt for $r'(2)$

c. Find the value(s) of a if the tangent lines to $f(g(x))$ and $g(f(x))$ are perpendicular at $x = 3$. (4)

$\left[f'(g(x)) \cdot g'(x)\right] \cdot \left[g'(f(x)) \cdot f'(x)\right] = -1$ at $x = 3$

$[f'(g(3)) \cdot g'(3)] \cdot [g'(f(3)) \cdot f'(3)] = -1$

$[f'(4) \cdot \frac{1}{2}] \cdot [g'(1) \cdot 5] = -1$

$2a^2 \left(\frac{1}{2}\right) \left(\frac{1}{a}\right)(5) = -1$

$5a = -1 \Rightarrow a = \frac{-1}{5}$

1 pt for derivative of $f(g(x))$ at $x = 3$
1 pt for derivative of $g(f(x))$ at $x = 3$
1 pt for $(m_1)(m_2) = -1$ or $m_2 = \frac{-1}{m_1}$
1 pt for answer
Parts a, b, and c all refer to \(f(x) \), given by \(f(x) = x^2 - x - 6 \) which is defined on \([0, 6]\).

a. Write an equation of the line tangent to \(f \) at the point where \(x = 4 \).

\[
\begin{align*}
\quad f(4) &= 4^2 - 4 - 6 = 6 \\
\quad f'(x) &= 2x - 1 \\nto f'(4) &= 2(4) - 1 = 7 \\
y - 6 &= 7(x - 4) \quad \text{or} \quad y = 7x - 22
\end{align*}
\]

1 pt for \(f(4) \)
1 pt for \(f'(x) \)
1 pts for equation

b. If \(g(x) = [f(x)]^2 \), write an equation of any horizontal tangent lines to \(g \). Show how you arrive at your answer.

\[
\begin{align*}
g'(x) &= 2f(x)f'(x) = 2(x^2 - x - 6)(2x - 1) = 2(x - 3)(x + 2)(2x - 1) = 0 \\
x &= 3, -2, \frac{1}{2} \quad \text{On domain, } x = 3, \frac{1}{2} \\
g(3) &= 0 \implies y = 0 \quad g\left(\frac{1}{2}\right) = \left(\frac{1}{4} - 1 - 6\right)^2 = \left(-\frac{25}{4}\right)^2 \implies y = \frac{625}{16}
\end{align*}
\]

1 pt for \(g'(x) \)
2 pts for equation
\((-1)\) for extraneous equations

c. If \(h(x) = \frac{1}{f(2x)} \), find all values of \(x \) where the tangent lines to \(h \) are either horizontal or do not exist on the interval \([0, 6]\). Show how you arrive at your answer.

\[
\begin{align*}
h(x) &= \left[f(2x)\right]^{-1} = \frac{1}{4x^2 - 2x - 6} \\
h'(x) &= \frac{-8x - 2}{(4x^2 - 2x - 6)^2} = \frac{-2(4x - 1)}{\left[2(2x^2 - x - 3)\right]^2} = \frac{-2(4x - 1)}{\left[(2x - 3)(x + 1)\right]^2}
\end{align*}
\]

On \([0,6]\), horizontal tangent line at \(x = \frac{1}{4} \)
and tangent line doesn’t exist at \(x = \frac{3}{2} \).

1 pt for \(h'(x) \)
1 pt for horizontal
1 pt for no tangent line
\((-1)\) for extraneous values
Let \(f(x) = \frac{e + \ln x}{x^2} \).

a. Find the average rate of change of \(f \) from \(x = 1 \) to \(x = e \). (2)

\[
\frac{f(e) - f(1)}{e - 1} = \frac{e + \ln e - e + \ln 1}{e^2 - 1^2} = \frac{e + 1}{e - 1} = \frac{e + e^3}{e^2 - e} \text{ or } \frac{e + e^3}{e^3 - e^2} \]

1 pt for average rate of change formula
1 pt for answer

b. Write an equation of the line tangent to \(f \) at \(x = 1 \). (3)

\[
f'(x) = \frac{x^2 \left(\frac{1}{x} \right) - 2x(e + \ln x)}{x^4} = x \left[1 - 2(e + \ln x) \right] \]
\[
f'(x) = \frac{1 - 2(e + \ln x)}{x^3} \Rightarrow f'(1) = \frac{1 - 2(e + \ln 1)}{1^3} = 1 - 2e \]
\[
f(1) = \frac{e + \ln 1}{1^2} = e \]
Tangent line: \(y - e = (1 - 2e)(x - 1) \)

1 pt for \(f'(x) \)
1 pt for \(f(1) \)
1 pt for answer

c. Find the \(x \)-coordinate of the point on \(f \) at which the tangent line to \(f \) is horizontal. (2)

\[
f'(x) = \frac{1 - 2(e + \ln x)}{x^3} = 0 \]
\[
2 \ln x = 1 - 2e \Rightarrow \ln x = \frac{1 - 2e}{2} \]
\[
x = \frac{1 - 2e}{2} \]

1 pt for \(f'(x) = 0 \)
1 pt for answer

d. Find \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to \infty} f(x) \). (2)

\[
\lim_{x \to 0^+} f(x) = -\infty \text{ or does not exist} \]
\[
\lim_{x \to \infty} f(x) = 0 \]

1 pt for \(\lim_{x \to 0^+} f(x) \)
1 pt for \(\lim_{x \to \infty} f(x) = 0 \)
Let $f(x)$ be given by the function $f(x) = \ln \left(x + \frac{1}{x} \right)$.

a. Show that $f'(x) = \frac{x^2 - 1}{x^3 + x}$.

$$f'(x) = \left(\frac{1}{x + \frac{1}{x}} \right) \left(1 - \frac{1}{x^2} \right) = \left(\frac{x}{x^2 + 1} \right) \left(\frac{x^2 - 1}{x^2} \right)$$

$$= \frac{x^2 - 1}{x(x^2 + 1)} = \frac{x^2 - 1}{x^3 + x}$$

1 pt for $f'(x) = \left(\frac{1}{x + \frac{1}{x}} \right) \left(1 - \frac{1}{x^2} \right)$

1 pt for algebra

b. Find the x-coordinate of the point(s) on f at which the tangent line to f is horizontal.

$$x^2 - 1 = 0 \Rightarrow x = \pm 1 \text{ but } x \neq -1 \text{ so } x = 1$$

1 pt for answer

c. Find the equation of the tangent line to $f(x)$ at $x = 2$.

$$f'(2) = \frac{4 - 1}{8 + 2} = \frac{3}{10}$$

$$y - \ln(2.5) = \frac{3}{10}(x - 2)$$

1 pt for $f'(2)$

1 pt for answer

d. If $g(x) = e^{2f(x)}$, find $g'(2)$.

$$g(x) = e^{2f(x)} = \left[e^{f(x)} \right]^2 = \left[e^{\ln \left(x + \frac{1}{x} \right)} \right]^2 = \left(x + \frac{1}{x} \right)^2$$

$$g'(x) = 2 \left(x + \frac{1}{x} \right) \left(1 - \frac{1}{x^2} \right) \text{ or } g'(x) = \frac{2(x^2 + 1)(x^2 - 1)}{x^3}$$

$$g'(2) = \frac{2(5)(3)}{8} = \frac{30}{8} = \frac{15}{4}$$

1 pt for $g(x) = \left(x + \frac{1}{x} \right)^2$

1 pt for $g'(x)$

1 pt for answer

e. Show that $f(x)$ and $g(x)$ have horizontal tangent lines at the same x-value(s).

$$g'(1) = \frac{2(2)(0)}{1} = 0$$

1 pt for answer
Consider the closed curve in the xy-plane given by \(x^2 - 6x + y^3 - 12y = 11 \).

a. Show that \(\frac{dy}{dx} = \frac{6 - 2x}{3y^2 - 12} \). (2)

\[
\begin{align*}
2x - 6 + 3y^2 \frac{dy}{dx} - 12 \frac{dy}{dx} &= 0 \\
\frac{dy}{dx} (3y^2 - 12) &= 6 - 2x \\
\frac{dy}{dx} &= \frac{6 - 2x}{3y^2 - 12}
\end{align*}
\]

1 pt for implicit differentiation
1 pt for verification

b. Write an equation for the line tangent to the curve at the point (6, -1). (2)

\[
\frac{dy}{dx}_{(6,-1)} = \frac{6 - 12}{3 - 12} = \frac{-6}{-9} = \frac{2}{3}
\]

Tangent line: \(y + 1 = \frac{2}{3}(x - 6) \) or \(y = \frac{2}{3}x - 5 \)

1 pt for \(\frac{dy}{dx} = \frac{2}{3} \)
1 pt for equation

c. Find the coordinates of all points on the curve where the line tangent to the curve is vertical. (3)

Tangent lines occur when \(3y^2 - 12 = 0 \) or \(y = \pm 2 \)

\[
\begin{align*}
y = 2: x^2 - 6x + 8 - 24 &= 11 \\
x^2 - 6x - 27 &= 0 \\
(x + 3)(x - 9) &= 0 \implies x = -3, 9 \text{ so vertical tangents at } (-3,2),(9,2)
\end{align*}
\]

\[
\begin{align*}
y = -2: x^2 - 6x - 8 + 24 &= 11 \\
x^2 - 6x + 5 &= 0 \\
(x - 1)(x - 5) &= 0 \implies x = 1, 5 \text{ so vertical tangents at } (1,-2),(5,-2)
\end{align*}
\]

1 pt for \(3y^2 = 12 \)
1 pt for \((-3,2),(9,2)\)
1 pt for \((1,-2),(5,-2)\)
2 pts maximum for only 2 of the 4 points

d. Show that it is impossible for this curve to have a horizontal tangent along the line \(y = 4 \). (2)

Horizontal tangents occur when \(6 - 2x = 0 \) or \(x = 3 \)

At \((3,4) \): \(9 - 18 + 64 - 48 = 73 - 66 = 7 \)

So \((3,4) \) is not on \(x^2 - 6x + y^3 - 12y = 11 \)

1 pt for \(6 - 2x = 0 \)
1 pt for showing \((3,4) \) not on curve
Consider the closed curve in the xy-plane given by \(2x^2 - xy + y^3 + x = 9\).

a. Show that \(\frac{dy}{dx} = \frac{y - 4x - 1}{3y^2 - x}\). (2)

\[
\begin{align*}
4x - x\frac{dy}{dx} - y + 3y^2\frac{dy}{dx} + 1 & = 0 \\
\frac{dy}{dx}(3y^2 - x) & = y - 4x - 1 \\
\Rightarrow \frac{dy}{dx} & = \frac{y - 4x - 1}{3y^2 - x}
\end{align*}
\]

b. Find equation(s) of all tangent lines to the curve at \(y = 1\). (4)

\[
\begin{align*}
2x^2 - xy + y^3 + x & = 9 \\
x = 2: \frac{dy}{dx} & = \frac{1 - 8 - 1}{3 - 2} = -8 \\
y = 1 = -8(x - 2) \text{ or } y = \frac{8}{5}(x + 2)
\end{align*}
\]

\[
\begin{align*}
2x^2 - x + 1 + x & = 9 \\
x = -2: \frac{dy}{dx} & = \frac{1 + 8 - 1}{3 + 2} = \frac{8}{5} \\
y = 17 - 8x
\end{align*}
\]

1 pt for implicit differentiation
1 pt for answer

1 pt for \(\frac{dy}{dx}\) at \(x = 2\)
1 pt for line at \(x = 2\)
1 pt for \(\frac{dy}{dx}\) at \(x = -2\)
1 pt for line at \(x = -2\)

1 pt for equation

1 pt for \(k\)

1 pt for \(k = -1.782\)

© 2012 www.mastermathmentor.com

Illegal to post this document on the Internet
Curves f and g are given by the equations below as shown in the figure to the right.

Curve f: $x^2 - 9\ln(2y - 1) + y^2 = 5$

Curve g: $x^2 + e^{y^2-1} - y = 4$

a. For curve f, show that $\frac{dy}{dx} = \frac{2xy - x}{9 - 2y^2 + y}$

\[
2x - \frac{9}{2y-1}\left(2\frac{dy}{dx}\right) + 2y\frac{dy}{dx} = 0
\]

\[
\frac{dy}{dx}\left(\frac{18}{2y-1} - 2y\right) = 2x \Rightarrow \frac{dy}{dx} = \frac{2x}{\frac{18}{2y-1} - 2y}
\]

\[
\frac{dy}{dx} = \frac{2x(2y-1)}{18 - 2y(2y-1)} = \frac{4xy - 2x}{18 - 4y^2 + 2y} = \frac{2xy - x}{9 - 2y^2 + y}
\]

b. Show that horizontal tangents to curve f must occur along the y-axis.

\[
\frac{dy}{dx} = 0 \text{ when } 2x(2y-1) = 0
\]

For curve f, y must be a number greater than $\frac{1}{2}$

So $2x = 0 \Rightarrow x = 0$ so horizontal tangents occur along the y-axis

1 pt for $\frac{dy}{dx} = 0$ when $2x(2y-1) = 0$
1 pt for $y > 0$
1 pt for explanation

1 pt for implicit differentiation
1 pt for algebra

1 pt for explanation

For curve g, find $\frac{dy}{dx}$.

\[
2x + e^{y^2-1}(2y)\frac{dy}{dx} - \frac{dy}{dx} = 0
\]

\[
\frac{dy}{dx}\left(1 - 2y e^{y^2-1}\right) = 2x \Rightarrow \frac{dy}{dx} = \frac{2x}{1 - 2y e^{y^2-1}}
\]

1 pt for implicit differentiation
1 pt for algebra

1 pt for explanation

d. Show that the line tangent to f is the same as the line normal to curve g at $(2, 1)$.

Curve f: $\frac{dy}{dx}_{(2,1)} = \frac{2(2)(1) - 2}{9 - 2(1^2) + 1} = \frac{4 - 2}{9 - 2 + 1} = \frac{2}{8} = \frac{1}{4}$

Curve g: $\frac{dy}{dx}_{(2,1)} = \frac{2(2)}{1 - 2(1)e^{1-1}} = \frac{4}{1 - 2} = -4$ so normal line has slope $\frac{1}{4}$

Since the slopes are the same and they pass through the same point, the lines are the same.

1 pt for $\frac{dy}{dx}_{(2,1)}$ for f
1 pt for $\frac{dy}{dx}_{(2,1)}$ for g
1 pt for explanation
Let \(f(x) \) be given by the function

\[
 f(x) = \begin{cases}
 9 - 4mx - (1-x)^2 & \text{if } x \leq 1 \\
 m^2x - n & \text{if } x > 1
 \end{cases}
\]

where \(m \) and \(n \) are constants and \(m \neq 0 \).

a. Write an expression for \(n \) if \(f \) is continuous at \(x = 1 \). (1)

\[
 \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \\
 9 - 4m = m^2 - n \Rightarrow n = m^2 + 4m - 9
\]

b. Show that \(f \) cannot be continuous at \(x = 1 \) if \(n \leq -14 \). (2)

\[
 -14 = m^2 + 4m - 9 \Rightarrow m^2 + 4m + 5 = 0 \\
 m = \frac{-4 \pm \sqrt{16 - 20}}{2} = \frac{-4 \pm 2i}{2} \\
 \text{For any values of } n \leq -14, m \text{ will be imaginary}
\]

C. If \(f \) is differentiable at \(x = 1 \), find the values of \(m \) and \(n \). Show your reasoning. (3)

\[
 f'(x) = \begin{cases}
 -4m - 2(1-x)(-1) & \text{if } x \leq 1 \\
 m^2 & \text{if } x > 1
 \end{cases}
\]

\[
 \lim_{x \to 1^-} f'(x) = \lim_{x \to 1^+} f'(x) \\
 -4m = m^2 \Rightarrow m^2 + 4m + 0 = 0 \Rightarrow m = -4 \\
 n = 16 - 16 - 9 = n = -9
\]

d. Using the values of \(m \) and \(n \) found in part c), determine values of \(x \) (if any) that will make \(f'(x) \) differentiable. Show your reasoning. (3)

\[
 f''(x) = \begin{cases}
 16 + 2(1-x) & \text{if } x \leq 1 \\
 16 & \text{if } x > 1
 \end{cases}
\]

\[
 f'''(x) = \begin{cases}
 -2 & \text{if } x \leq 1 \\
 0 & \text{if } x > 1
 \end{cases}
\]

\[
 \lim_{x \to 1^-} f''(x) \neq \lim_{x \to 1^+} f''(x) \text{ as } -2 \neq 0 \\
 \text{So } f'(x) \text{ is differentiable at all } x \text{-values except } x = 1
\]
Let \(f(x) \) be given by the function \(f(x) = \begin{cases} g(x) + a & \text{if } x \leq 0 \\ 3 - b \cos x & \text{if } x > 0 \end{cases} \) where \(a \) and \(b \) are constants and \(g(x) = |1 - x^2| \).

a. Determine if \(g(x) \) is differentiable at \(x = 1 \). Justify your answer. (3)

\[
g(x) = |1 - x^2| = |x^2 - 1|
\]

\[
g(x) = \begin{cases} x^2 - 1 & \text{if } |x| \geq 1 \\ -(x^2 - 1) & \text{if } |x| < 1 \end{cases}
\]

\[
g'(x) = \begin{cases} 2x & \text{if } |x| \geq 1 \\ -2x & \text{if } |x| < 1 \end{cases}
\]

\[
\lim_{x \to 1} g(x) = 0 \quad \lim_{x \to 1^+} g(x) = 0 \quad \lim_{x \to 1^-} g'(x) = 2 \quad \lim_{x \to 1} g''(x) = -2
\]

so \(g(x) \) is continuous at \(x = 1 \) so \(g(x) \) is not differentiable at \(x = 1 \)

b. Show that \(f(x) \) is differentiable at \(x = 0 \) if \(a = 1 \) and \(b = 1 \). (3)

\[
f(x) = \begin{cases} x^2 & \text{if } x < -1 \\ 1 - x^2 + 1 & \text{if } -1 \leq x \leq 0 \\ 3 - \cos x & \text{if } x > 0 \end{cases}
\]

\[
f'(x) = \begin{cases} -2x & \text{if } x \leq 0 \\ \sin x & \text{if } x > 0 \end{cases}
\]

\[
\lim_{x \to 0^+} f(x) = 2 \quad \lim_{x \to 0^+} f(x) = 3 - 1 = 2 \quad \lim_{x \to 0} f'(x) = 0 \quad \lim_{x \to 0} f''(x) = 0
\]

So \(f \) is continuous at \(x = 0 \) so \(f \) is differentiable at \(x = 0 \)

c. Find a relationship between \(a \) and \(b \) in order for \(f(x) \) to be continuous at \(x = 0 \). (1)

\[
f(x) = \begin{cases} x^2 & \text{if } x < -1 \\ 1 - x^2 + 1 & \text{if } -1 \leq x \leq 0 \\ 3 - \cos x & \text{if } x > 0 \end{cases}
\]

\[
\lim_{x \to 0} f(x) = 1 + a \quad \lim_{x \to 0} f(x) = 3 - b
\]

so \(1 + a = 3 - b \) or \(a + b = 2 \)

d. Find a relationship between \(a \) and \(b \) in order for \(f(x) \) to be differentiable at \(x = 0 \). (2)

\[
f'(x) = \begin{cases} 2x & \text{if } x < -1 \\ -2x & \text{if } -1 \leq x \leq 0 \\ b \sin x & \text{if } x > 0 \end{cases}
\]

\[
\lim_{x \to 0} f'(x) = 0 \quad \lim_{x \to 0} f''(x) = 0
\]

so \(f \) is differentiable for any value of \(b \) if \(a + b = 2 \)